

Application of torrefaction technology for coal power plants

Workshop "Bioeconomy in the Netherlands" Tokyo, 4 September 2018

Blackwood Technology company background

- Blackwood Technology acquired leading torrefaction technology from Topell Energy
- Award winning technology
- Backed by major EU utility companies
- Built and operated commercial demonstration plant in the Netherlands (2010–14). Proved its torrefaction technology at industrial scale
- Successful co-firing tests with utilities in coal fired power plants (2012–17)
- Signed strategic licensing agreement with Eskom for roll-out of torrefaction plants in SADC region

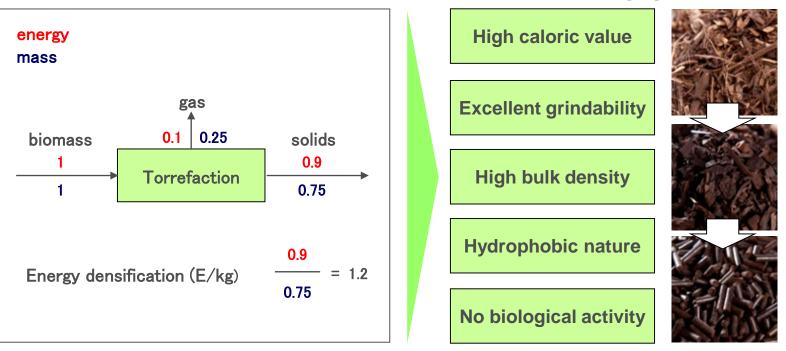
Blackwood's *FlashTor*[®] torrefaction technology

- FlashTor[®] is proprietary torrefaction technology turning biomass into a high-grade solid bio-fuel ("bio-coal")
- *FlashTor[®]* enables large scale replacement of fossil coal by renewable biomass in power generation and steel production
- *FlashTor*[®] is proven and demonstrated at industrial scale
- Blackwood pellets[®] have been successfully tested and co-fired by utilities in Europe and South Africa
- *FlashTor*[®] technology is protected by patents

Blackwood

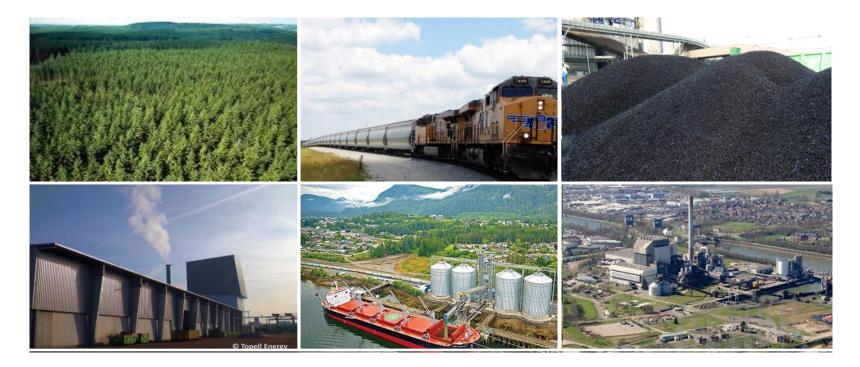
Blackwood's technology was proven in Topell's industrial scale demo plant in Duiven (Netherlands, 2010–14)

Demonstration plant in Duiven (NL)	Key Information	
<image/>	 Background Built full scale demo plant Duiven (2010) Start-up plant, first adjustments and first product shipped (2011–12) Re-design of torrefaction system (H1 2013) Successful commissioning and ramp-up (H2 2013) Proof of concept: industrial scale production and large scale co-firing (2013–14) Plant shutdown and mothballed due to ending of Dutch co-firing support (H2 2014) Key facts First commercial scale torrefaction plant Input feedstock: forest residues 7 t/hr, 24x7, 50,000 ton production capacity 	


Blackwood pellets[®] have been successfully co-fired in European power stations

- · Co-milling and co-firing biomass using <u>existing</u> coal infrastructure
- No adverse effect on handling, milling and combustion
- Benefits from biomass (lower ash, reduced emissions)

Torrefaction transforms biomass into bio-coal


··· makes coal-like, high grade fuel

Torrefaction of biomass ...

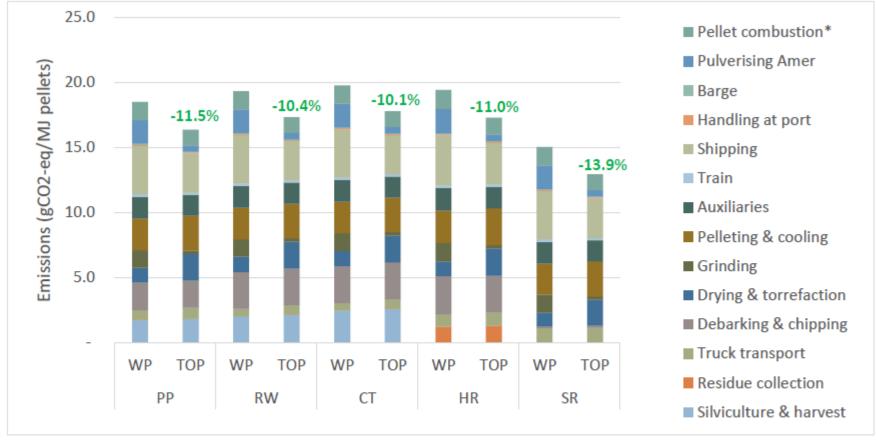
Biomass is heated to between 250 and 300°C in an inert atmosphere

Torrefaction has a positive impact on cost of supply chain

Feedstock/production

- <u>Lower cost biomass</u> from forestry operations
- Alternative feedstocks (agricultural residues)

Transport


- High caloric value results in <u>lower</u> transport cost
- Hydrophobic nature
- · No biological activity

Power plant

- Handling, co-milling and co-firing by existing coal infrastructure
- High caloric value lower de-rating

Torrefaction also reduces CO₂-footprint of supply chain

Figure E1. GHG emissions of white- (WP) and torrefied pellet (TOP) scenarios on a pellet energy basis. US Pellet Producer (PP), roundwood (RW), commercial thinnings (CT), harvest residues (HR), sawmill residues (SR). *CO₂ emissions from combustion excluded to account for forest carbon sequestration. Numbers above data columns are percental changes from switching from WP to TOP.

Source: Maria Derks, Master Thesis, Faculty of Geosciences University of Utrecht (TKI BilogikNL project)

Comparison with wood and steam explosion pellets

	Wood pellets	SE pellets	Blackwood pellets®
Calorific value (NCV a.r.)	17 – 18 MJ/kg	19 – 19.5 MJ/kg	20 – 22 MJ/kg
Grindability		+/-	++
Biological activity	Yes	Yes	No
Bulk density (kg/m3)	600–650	675–725	700-750
Issues	Self-heating	Smell, leachate and no-supply	No-supply
Economics (CIF cost price)	+	_	++

Note: values will depend on feedstock used

Torrefaction unlocks a wide array of feedstocks

Feedstock alternatives: from woody biomass to agro residues

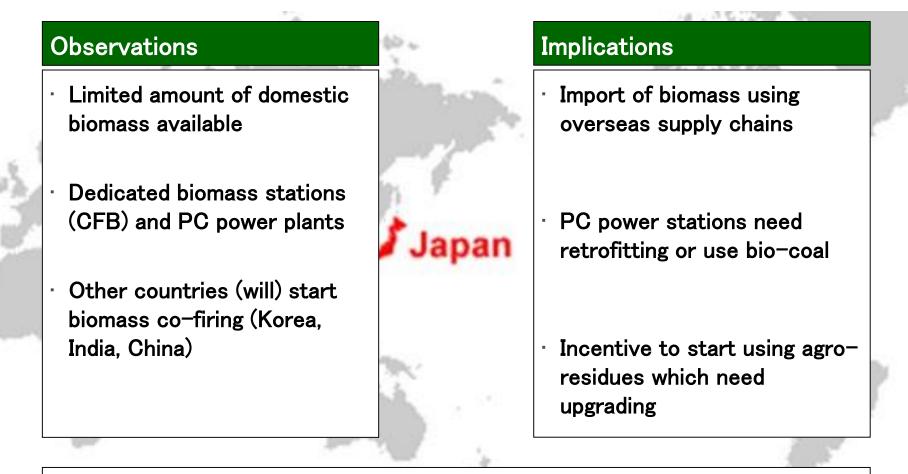
Observations

- Limited amount of domestic biomass available
- Dedicated biomass stations (CFB) and PC power plants
- Other countries (will) start biomass co-firing (Korea, India, China)

Observations

- Limited amount of domestic biomass available
- Dedicated biomass stations (CFB) and PC power plants
- Other countries (will) start biomass co-firing (Korea, India, China)

Implications


•

 Import of biomass using overseas supply chains

PC power stations need retrofitting or use bio-coal

Incentive to start using agroresidues which need upgrading

Torrefaction can play a pivotal role in securing a low cost biomass supply chain while using existing PC power plant infrastructure

HANK YOU

Please contact:

Maarten Herrebrugh – CEO Email: <u>m.herrebrugh@blackwood-technology.com</u> Tel: +31 651 833113 <u>www.blackwood-technology.com</u>

Blackwood Technology BV Siriusdreef 17-27 2132 WT Hoofddorp Netherlands